CS 4100: Introduction to Al

Wayne Snyder
Northeastern University

Lecture 11: Review of Probability and Likelihood for Machine Learning




Random Experiments

A Random Experiment is a process that produces uncertain outcomes from a
well-defined set of possible outcomes. Usually there is some kind of physical
experiment which is being modeled theoretically.

Random Outcome
Process
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Probability

We measure the probability of events on a real-number scale from 0 to 1:

Less probable More probable
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Finite Equiprobable Probability Spaces

For finite and equiprobable probability spaces,

it 1s easy to calculate the probability:

A
P(A) = %

Example: Roll a die, how many dots showing
on the top face? Let A = "less than
5 dots are showing."

S={1, 2, ...,6}
P-{1/6,1/6,.... ,1/6}

P(A) = 4/6 =2/3 =0.6666...




Conditional Probability: P(A | B ) = P(A) if we know B has happened

Example: Roll two dice. A = "the total # dots showing is > 8" and
B = "the first roll was 3"

Whatis PCA | B)?

The key to solving such problems is to realize that there are two probability spaces:
o the one before you know whether B has happened, and

o the one that has been "conditioned" by knowing that B has definitely happened, so the
sample space has shrunk and the proportion representing event A may have changed:

Original Conditioned by knowing B happened:
g S'=B
A /B// A
\
 —»




Conditional Probability

Conditioning the original sample space means changing the perspective: instead of

finding the area of A inside S, we are finding the area of A N B inside B:

P(AIB) = P(A N B)
P(B)
S S'=B
A —B
ANB ANB
\ :




Independence and Dependence

PANB
We say that two events A and B are independent if PA1B) = (p(g) )
P(AIB) = P(A) P(BIA) = FanB)

or: PA)

P(A N B) = P(A) * P(B)

Example:

Suppose in a particular city, 40% of the population is male, and 60% female, and 20%
of the population smokes. If male smokers are 8% of the population, then are

smoking and gender independent? That is, are the following two events independent?

YES. Check:

A = Smoket P(ANB)=0.08=0.4*0.2 = P(A) * P(B)

B = Male



Bayes’ Rule

We can rearrange the conditional probability rule in a way that makes the

sequence of the events irrelevant -- which happened first, A or B? Or did they

happen at the same time? Does it matter?

P(AIB) =

P(A N B) PBIA) = LENAD
P(B) P(A)

We can do a little algebra to define conditional probabilities in terms of each
other:

P(BIA) * P(A) = P(BNA) = P(A|B) * P(B)

SO:

P(A|B) % P(B)

P(BIA) = 2




Bayes’ Rule

The best way to understand this is to view it with a tree diagram!

P(B|A) = the probability that when A happens, it was “preceeded” by B:

If A has happened, what is the

P(A[B) ANB . probability that it did so on the

~. path where B also occurred?

U A Note:

. A=P(AnB)uUP(AnB®)
P(A|B") ANB® «7
/ So what percentage of A is due
to ANB?

Same calculation as:

P(BIA) = P(BNA) _ P(ANB)

P(A) P(A)



Bayes’ Rule

This has an interesting flavor, because we can ask about causes of outcomes:

A Priori Reasoning -- “I randomly choose a person and observe that he is male;

what the probability that it is a smoker?”

“The first toss of a pair of dice is a 5; what is the probability that the total 1s

greater than 827

A Posteriori Reasoning -- “I find a cigarette butt on the ground, what is the

probability that it was left by a man?”

“The total of a pair of thrown dice is greater than 8; what is the probability that

the first toss was a 527
This seems odd, because instead of reasoning
forward from “causes to effects” we are reasoning
backwards from “effects to causes” but really it is
just different ways of phrasing the mathematical
formulae. Time is not really relevant!



Discrete RandomVariables: Probability Mass Function

The probability function of a discrete random variable X is a function

fx = Probability Mass Function (PMF)

which assigns a probability to each real number in the range of X and
follows the normal rules for a probability space:

fx-:Rx—>R

Vae R, fx(a)=20

Z fx(a) = 1.0

a€ R,



Discrete RandomVariables: Probability Distributions

We will emphasize the distributions of random variables, using graphical
representations to help our intuitions.

Example:

Y = “T’he number of tosses of a fair coin
until a head appears”

Probability Distribution for Y
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Discrete vs Continuous Distributions

Discrete Random Variables

The Probability Mass Function (PMF)

of a discrete random variable X is a
function from the range of X into R :

P, : Ry » R

such that

()  Vye Ry Px(») >0.0

() Y Px(y) =10

YERx

Continuous Random Variables

The Probability Density Function (PDF)

of a continuous random variable X is a
function from R to R :

fr it R R

such that

(i) Vy fx(y) 2 0.0

i [ foay=10




Examples of Distributions from NLP

I am going to show examples from the Brown Corpus, an early (1961) and
still-used corpus of various English texts:

Category Genre (Code) # of Total %
texts | Tokens
INFORMATIVE | Learned (J) 80 160,000 16.0%
INFORMATIVE | Belles Lettres, 75 150,000 15.0%
Biography, Memoirs,
ete (G)
INFORMATIVE | Popular Lore (F) 48 96,000 9.6%
INFORMATIVE | Press: Reportage (A) 44 88,000 8.8%
INFORMATIVE | Skills and Hobbies (E) 36 72,000 7.2%
INFORMATIVE | Miscellaneous (H) 30 60,000 6.0%
IMAGINATIVE | General Fiction (K) 29 58,000 5.8%
IMAGINATIVE | Adventure and 29 58,000 5.8%
Western Fiction (N)
IMAGINATIVE | Romance and Love 29 58,000 5.8%
Story (P)
INFORMATIVE | Press: Editorial (B) 27 54,000 5.4%
IMAGINATIVE | Mystery and Detective 24 48,000 4.8%
Fiction (L)
INFORMATIVE | Press: Reviews 17 34,000 3.4%
(theatre, books, music,
dance) (C)
INFORMATIVE | Religion (D) 17 34,000 3.4%
IMAGINATIVE | Humor (R) 9 18,000 1.8%
IMAGINATIVE | Science Fiction (M) 6 12,000 1.2%
TOTAL 500 | 1,000,000 100.0%

The composition of the Brown Corpus

Brown Corpus Sample (untagged)

A01 0010 The Fulton County Grand Jury said
Friday an investigation

A01 0020 of Atlanta's recent primary election
produced "no evidence" that

A01 0030 any irregularities took place, The jury
further said in term-end

A01 0040 presentments that the City Executive
Committee, which had over-all

A01 0050 charge of the election, "deserves the
praise and thanks of the

A01 0060 City of Atlanta" for the manner in
which the election was conducted.

Brown Corpus Sample (tagged)

A01_FO 0010_MC The_AT Fulton_NP1 County_NN1
Grand_JJ Jury_NN1 said_VVD Friday_NPD1 an_AT1
investigation_NN1

A01_FO 0020_MC of IO Atlanta_93's_03 recent_JJ
primary_ll election_NN1 produced_VWD "_" no_AT
evidence_NN1 "_" that_CST

A01_FO 0030_MC any_DD irregularities_NN2
took_VVD place_NN1 ._,

The_AT jury_NN1 further_RRR said_VVD in_ll term-
end_NN1

AO01_FO 0040_MC presentments_NN2 that_CST
the_AT City_NN1 Executive_NN1 Committee_NN1,_,
which_DDQ had_VHD over-all_RR

AO1_FO 0050_MC charge_NN1 of_|O the_AT
election_NN1,_ "_" deserves_VVZ the_AT praise_NN!
and_CC thanks_NN2 of IO the_AT

A01_FO 0060_MC City_NN1 of_IO Atlanta_NP1"_*
for_IF the_AT manner_NN1 in_|l which_DDQ the_AT
election_NN1 was_VBDZ conducted_VVUN ._.



Examples of Distributions from NLP
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First of all, be sure
you understand the
difference between a
histogram and a
probability
distribution!



Examples of Distributions from NLP

012

0.10 1

0.08 1

Probability

0.04 1

0.02 1

0.00 -

Probability Distribution of Letters in Brown Corpus

0.06 1




Examples of Distributions from NLP
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Examples of Distributions from NLP

There are 1,161,192 occurrences of words in the Brown Corpus.

There are 47,451 unique words; 20,478 of these words are hapax legomena, i.e., they occur only once

in the corpus.

Probability Distribution of all words in Brown Corpus
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The first 100 words are:

['the', 'of', 'and', 'to', 'a', 'in', 'that', 'is', 'was', 'he', 'for', 'it', 'with', 'as', 'his', 'on', 'be', 'at',
'by', 'i', 'this', 'had', 'not', 'are', 'but', 'from', 'or', 'have', 'an', 'they', 'which', 'one', 'you', 'were', 'he
r', 'all', 'she', 'there', 'would', 'their', 'we', 'him', 'been', 'has', 'when', 'who', 'will', 'more', 'if', 'no']



Examples of Distributions from NLP
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Examples of Distributions from NLP

Probability Distribution of 100 most common words in Brown Corpus
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['the', 'of', 'and', 'to', 'a', 'in', 'that', 'is', 'was', 'he', 'for', 'it', 'with', 'as', 'his', 'on', 'be', 'at',
'by', 'i', 'this', 'had', 'not', 'are', 'but', 'from', 'or', 'have', 'an', 'they', 'which', 'one', 'you', 'were', 'he
r', 'all', 'she', 'there', 'would', 'their', 'we', 'him', 'been', 'has', 'when', 'who', 'will', 'more', 'if', 'no']



Bayesian Reasoning and Maximum
Likelihood Estimates (MLE)

A typical machine learning workflow is the following:

Parameters
Q]
Raw __ Data _, Curated ML
Data Preparation Data - Algorithm —> Results Y

|

Metric 1 <——| Evaluation



Bayesian Reasoning and MLE

Typically:

Pick initial values for the parameters €, based on some initial knowledge (e.g., from a textbook, a similar
experiment, a “hunch,” etc.),

Repeat

Perform experiment and find new U

Based on knowledge gained from last run revise @ But notice this is a bit... weird! We
Until ..... are used to thinking of programs as

starting with inputs and producing
outputs, but in ML the emphasis is on
using the outputs to determine the
inputs!

m Data/

evidence

Prior knowledge/
> domain
K expertise/ Updated

subjective belief belief/
probability




Bayesian Reasoning and MLE

Bayesian Reasoning is a way of thinking about probability which emphasizes this
point of view, and has become standard in NLP and ML.

Formally, we have Bayes Rule and some terminology:

Data/
evidence

Prior knowledge/

domain
expertise/ Updated
subjective belief belief/

P(B | A)P(A) probability

P(B)/B

P(A|B) =



Bayesian Reasoning and MLE

But notice this is a bit... weird] We are used to thinking of programs as starting with inputs
and producing outputs, but in ML the emphasis 1s on using the outputs to determine the
inputs!

m Data/

Prior knowledge/ evidence )
domain
y Updated

expertise/
subjective belief belief/
probability
el

This is generally called the Bayesian interpretation of the experiment: Given some

experimental result, how likely is the parameter 8 to be some particular value?

Note: Probability refers to outcomes, and likelithood refers to parameters.



Bayesian Reasoning and MLE

Let’s consider a simple random experiment:

We tlip a (possibly) unfair coin n times and record the outcomes.

Frequentist: The data will converge in the limit to a specific probability € which existed
before we started to flip:

[ ] from numpy import mean
theta = 0.65

for n in range(7):
N = 10**n
print("Over",N," iterations, the mean is", mean([X(theta) for k in range(N)]))

Over 1 iterations, the mean is 1.0

Over 10 iterations, the mean is 0.7

Over 100 iterations, the mean is 0.67

Over 1000 iterations, the mean is 0.648

Over 10000 iterations, the mean is 0.657

Over 100000 iterations, the mean is 0.65094
Over 1000000 iterations, the mean is 0.650158

Bayesian: Given some experimental result, what is the MOST LIKELY value for the
parameter 07



Bayesian Reasoning and MLE

In our example we would naturally assume that € is simply the mean of the outcomes observed so far, for example, if
we get outcomes

[ ] theta = 0.25
n = 100
outcomes = [X(theta) for k in range(n) ]
print(outcomes)

we would assume that @ is the mean of the n outcomes, i.e.,

b = count(outcomes = 1)
"~ count(all outcomes)




Bayesian Reasoning and MLE

[ ] theta_hat = mean(outcomes)

print("theta_hat =", theta_hat)

theta_hat = 0.24

This is the most likely estimate for 6, since we have no other information.

The more outcomes we see, the more accurate an estimate of 8 we would get. However,
notice that in general, we will not get 8 exactly right, but only an estimate based on our

experiment. This is appropriate, because we did not know 8 to start with, and we want
the most likely value.



Bayesian Reasoning and MLE

Now we can introduce the general notion of the Maximum Likelihood Estimate (MLE),
which applies to our simple experiment and to many more complex situations which
occur often in NLP and ML.

If we express the situation mathematically, keeping the parameter 6 in the foreground, let
us consider the n outcomes of the previous experiment as a sequence of n independent
and identically-distributed random variables, X;, Xy, ...., X, where

Xi(0) ~ Bernoulli(0).

and the PDF (which assigns a probability to each outcome x) is

0 ifx=1
)i
J(x. 6) {1—9 Eri o

In the frequentist interpretation, we would ask: Given the parameter 6, how likely are the
outcomes X,,...,X,, and get the answer

f(X1,0) % f(X5,0) % - % f(X,,0) = [] f(Xi.0).
i=1



Bayesian Reasoning and MLE

[ ] import numpy as np

def f(x,theta):
if(x==1):
return theta
else:
return l-theta

outcome_probs = [f(x,theta) for x in outcomes]

print("Outcomes", outcomes)

print("Outcome probabilities:",outcome_probs)

print("with theta =",theta,"the probability of this particular list of outcomes is ",
np.prod( outcome_probs))

outcomes [0, O, O, O, 1, O, O, O, O, 1, O, O, O, O, O, O, 1, O, O, O, O, O, 1, O, O, O, O, O, O, O, 1, O, O,
Outcome probabilities: [0.75, 0.75, 0.75, 0.75, 0.25, 0.75, 0.75, 0.75, 0.75, 0.25, 0.75, 0.75, 0.75, 0.75,
With theta = 0.25 the probability of this particular list of outcomes is 1.1355760538867237e-24



Bayesian Reasoning and MLE

In the Bayesian interpretation, where we don't assume we know 8, we would ask a more
useful question: Given the set of outcomes, what is the mos# likely value

for 6? Alternately, what estimate of 6 is most likely given our outcomes?

This is formalized as the /ikelihood tunction for n outcomes with parameter 6:

.0 = []rx.0.
i=1

The maximum likelihood estimator (MLE) is then

A

0 = arg mglx L,(0) = the value of # that maximizes L, (0)

If we try many values of the parameter, we would see that it reaches a maximum at the
value found by simple counting....



Bayesian Reasoning and MLE

° from matplotlib import pyplot as plt

T = np.arange(0,1,0.005)
P = [np.prod( [f(x,theta) for x in outcomes] ) for theta in T]

mx = np.max(P)

plt.figure(figsize=(12,6))

plt.title("Likelihood Estimates")
plt.xlabel("Theta")

plt.ylabel("Joint Probability of Outcomes")
plt.plot(T,P)
plt.plot([theta_hat,theta_hat],[0,mx],color='r")
plt.show()
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The MLE formalizes the idea that we are searching for the best possible (= most likely) set of
parameters; we shall see (e.g., in Logistic Regression) that when there is an explicit formula for L,
we can calculate the MLE directly using the derivative of L,,.



