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A Random Experiment is a process that produces uncertain outcomes from a 
well-defined set of possible outcomes. Usually there is some kind of physical 
experiment which is being modeled theoretically. 

Random Experiments

Outcome



We measure the probability of events on a real-number scale from 0 to 1:

Probability

Impossible Certain

More probableLess probable
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Finite Equiprobable Probability Spaces

For finite and equiprobable probability spaces, 

it is easy to calculate the probability:

Example:  Roll a die, how many dots showing 
on the top face? Let A = "less than
5 dots are showing." 

S = { 1,    2,    ....  , 6  }            
P = { 1/6, 1/6, ....  , 1/6 }

P(A) =  4/6 = 2/3 = 0.6666...
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Conditional Probability:  P( A | B ) = P(A) if we know B has happened

A B

S

Example:  Roll two dice. A = "the total # dots showing is > 8" and 
B = "the first roll was 3"

What is P( A | B )?

The key to solving such problems is to realize that there are two probability spaces: 
o the one before you know whether B has happened, and 
o the one that has been "conditioned" by knowing that B has definitely happened, so the 

sample space has shrunk and the proportion representing event A may have changed:

Original                                                  Conditioned by knowing B happened:



Conditional Probability

Conditioning the original sample space means changing the perspective: instead of 
finding the area of A inside S, we are finding the area of A ∩ B inside B:

S

A B

S’ = B

A ∩ B A ∩ B



Independence and Dependence

We say that two events A and B are independent if

or:

Example: 

Suppose in a particular city, 40% of  the population is male, and 60% female, and 20% 

of  the population smokes.  If  male smokers are 8% of  the population, then are 

smoking and gender independent? That is, are the following two events independent?

A = Smoker

B = Male

YES.        Check:

P(A ∩ B ) = 0.08 = 0.4 * 0.2 = P(A) * P(B)



Bayes’ Rule

We can rearrange the conditional probability rule in a way that makes the 
sequence of the events irrelevant -- which happened first, A or B? Or did they 
happen at the same time?  Does it matter?  

We can  do a little algebra to define conditional probabilities in terms of each 
other:

so:  



Bayes’ Rule

The best way to understand this is to view it with a tree diagram!

P(B|A) = the probability that when  A happens, it was “preceeded” by B:

If  A has happened, what is the 
probability that it did so on the 
path where B also occurred?

Note:

A = P( A ∩ B ) ∪ P( A ∩ Bc )

So what percentage of  A is due 
to  A ∩ B ?

Same calculation as:



Bayes’ Rule

This has an interesting flavor, because we can ask about causes of  outcomes:

A Priori Reasoning -- “I randomly choose a person and observe that he is male; 
what the probability that it is a smoker?”

“The first toss of  a pair of  dice is a 5; what is the probability that the total is 

greater than 8?”

A Posteriori Reasoning -- “I find a cigarette butt on the ground, what is the 

probability that it was left by a man?”

“The total of  a pair of  thrown dice is greater than 8; what is the probability that 

the first toss was a 5?”
This seems odd, because instead of  reasoning 
forward from “causes to effects” we are reasoning 
backwards from “effects to causes” but really it is 
just different ways of  phrasing the mathematical 
formulae.  Time is not really relevant!



Discrete RandomVariables: Probability Mass Function

The probability function of a discrete random variable X is a function

fX =    Probability Mass Function (PMF) 

which assigns a probability to each real number in the range of X and 
follows the normal rules for a probability space: 



Discrete RandomVariables: Probability Distributions

We will emphasize the distributions of random variables, using graphical 
representations to help our intuitions. 

Example:

Y = “The number of tosses of a fair coin 
until a head appears”



Discrete vs Continuous Distributions 

Discrete Random Variables Continuous Random Variables

The Probability Mass Function (PMF) 
of a discrete random variable X is a 
function from the range of X into R :

such that     

(i)

(ii)

The Probability Density Function (PDF)  
of a continuous random variable X is a 
function from R  to R :

such that     

(i)

(ii)



Examples of Distributions from NLP

I am going to show examples from the Brown Corpus, an early (1961) and 
still-used corpus of various English texts:



Examples of Distributions from NLP

First of all, be sure 
you understand the 
difference between a 
histogram and a 
probability 
distribution!



Examples of Distributions from NLP



Examples of Distributions from NLP



Examples of Distributions from NLP

The first 100 words are:

There are 1,161,192 occurrences of words in the Brown Corpus.

There are 47,451 unique words; 20,478 of these words are hapax legomena, i.e., they occur only once 
in the corpus.  



Examples of Distributions from NLP



Examples of Distributions from NLP



Bayesian Reasoning and Maximum 
Likelihood Estimates (MLE)

A typical machine learning workflow is the following:

Data 
Preparation

Raw 
Data

Curated 
Data

ML
Algorithm Results Y
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Θ

X

EvaluationMetric 𝜇



Bayesian Reasoning and MLE

Typically:
Pick initial values for the parameters 𝛩, based on some initial knowledge (e.g., from a textbook, a similar 
experiment, a “hunch,” etc.), 
Repeat

Perform experiment and find new 𝜇
Based on knowledge gained from last run revise 𝛩

Until .....
But notice this is a bit...  weird!   We 
are used to thinking of programs as 
starting with inputs and producing 
outputs, but in ML the emphasis is on 
using the outputs to determine the 
inputs!



Bayesian Reasoning is a way of thinking about probability which emphasizes this 
point of view, and has become standard in NLP and ML.
Formally, we have Bayes Rule and some terminology:

AB

Bayesian Reasoning and MLE



But notice this is a bit...  weird!   We are used to thinking of programs as starting with inputs 
and producing outputs, but in ML the emphasis is on using the outputs to determine the 
inputs!

This is generally called the Bayesian interpretation of the experiment: Given some 
experimental result, how likely is the parameter 𝜃 to be some particular value?
Note: Probability refers to outcomes, and likelihood refers to parameters.

Bayesian Reasoning and MLE



Let’s consider a simple random experiment:  
We flip a (possibly) unfair coin n times and record the outcomes.

Frequentist: The data will converge in the limit to a specific probability 𝜃 which existed 
before we started to flip:

Bayesian: Given some experimental result, what is the MOST LIKELY value for the 
parameter 𝜃? 

Bayesian Reasoning and MLE



Bayesian Reasoning and MLE



This is the most likely estimate for 𝜃, since we have no other information. 

The more outcomes we see, the more accurate an estimate of 𝜃 we would get. However, 
notice that in general, we will not get 𝜃 exactly right, but only an estimate based on our 
experiment. This is appropriate, because we did not know 𝜃 to start with, and we want 
the most likely value.

Bayesian Reasoning and MLE



Now we can introduce the general notion of the Maximum Likelihood Estimate (MLE), 
which applies to our simple experiment and to many more complex situations which 
occur often in NLP and ML.

If we express the situation mathematically, keeping the parameter 𝜃 in the foreground, let 
us consider the 𝑛 outcomes of the previous experiment as a sequence of 𝑛 independent 
and identically-distributed random variables, X1, X2, ...., Xn, where

and the PDF (which assigns a probability to each outcome 𝑥) is

In the frequentist interpretation, we would ask: Given the parameter 𝜃, how likely are the 
outcomes 𝑋1,…,𝑋n, and get the answer

Bayesian Reasoning and MLE



Bayesian Reasoning and MLE



In the Bayesian interpretation, where we don't assume we know 𝜃, we would ask a more 
useful question: Given the set of outcomes, what is the most likely value 
for 𝜃? Alternately, what estimate of 𝜃 is most likely given our outcomes?
This is formalized as the likelihood function for 𝑛 outcomes with parameter 𝜃:

The maximum likelihood estimator (MLE) is then

If we try many values of the parameter, we would see that it reaches a maximum at the 
value found by simple counting....

Bayesian Reasoning and MLE



Bayesian Reasoning and MLE


